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ABSTRACT 

An analytic and complete solution of Einstein's field equations 

I\-term is presented for a dust-filled universe (p = 0). 
ra  

without the 

The solution is etationary and inhomogeneous and does not contain 

anp closed time-like lines. 

solution are studied. 

Also come of the propemtiem of the 
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The purpose of t h i s  paper is  t o  present an ana ly t ic  and complete 

solut ion of Einstein 's  f ield-equatiom for a dust-fblled universe 

(p > 0 ,  p - 0)  without the cosmological 

inhomogeneow and s ta t ionary,  with cyl indrical  symnetry, so it  w i l l  

not be found appropriate i n  discussions of observational cosmology; 

A-term. The solut ion is 

but its existence may give reason t o  hope that there may a l so  e x i s t  

non-stationary solutions which avoid the  singular epochs found i n  

!riedman solutions and other re la ted cosmological models. The 

solut ion presented here has the fur ther  m e r i t  t h a t  i t  does not contain 

any closed time-like lines. A l l  known solutions of Einstein 's  f i e l d  

equaqions f o r  a dust-fil@ed universe qeem t o  suf fer  from some 

updesirable features. Wnsider f i r s t a t h e  stationary, solution. The 

sRat&ally homogeneous s d u t i o n s  of Eiastein,  GtJdel'l), Oesvath and 

Sghhiicking(2) , and O ~ s v a t i ( ~ )  a l l  requixe a non-vanishing cosmological 

ATteqm. 

(whic& has recently been re-discovered by Wright (6)) although it does 

me inhomogeneaus solution of- +nczos(4) and van Stockum (5) 

(TJ dksvath, I., J. Math. Phys. 5, 591F (1965). 

(9 Ganczos, Zeite. f. Pfiysik, 2, 73 (1924). 

(q An Stocktna, W.J., PPoc. Roy. SOC. Ed. 57, 135 (1937). 

(9 Wight ,  J.P., J. Matd. Phys. 5, 103 (1965). 

I 
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not require a cosmological term, nevertheless contains closed time- 

l i k e  l i nes  as i n  a d e l ' s  universe. 

S h e ~ l e y ' ~ ) ,  the solut ion has a s ingular i ty  a t  a f i n i t e  proper 

distance from the axis of eymnetry where the matter-density and 

scalar cuxvature become in f in i t e .  

Furkher, as pointed out by 

Ehlers(8) has shown how one can 

c-ons_fruct a l l  solutions wi th  A = 0 for  dis t r ibut iona of matter in 

r ig id  ro ta t ion  from static vacuum metrics, but the global properties 

regarding the presence of s ingular i t ies  and closed time-like l ines  

have not been investigated. Of the non-stationary solutione with 

vgniqhing cosmological constant, the singular epochs i n  the Friedman 

lpnogeneous and isotropic solutions are famil iar ,  and Shepley (7) 

lays qhown tha t  a large class of closed, homogeneouq~non-isotropic 

splufiona a180 involve q,ingular epoch ,  while Hawki~ag(~) shows that 

411 polutions which a t  some epoch dif,Ser from the open Friedman 

w d e \  i n  su f f i c i en t ly  small but  otheryise a rb i t r a ry  ways have, l i k e  

the Friedman model i t s e h f ,  evolved frqm a singular beginning. W e  

+avp as a problem fo r  qurther investigations t o  decide whether the 

wesent  example is e n t i v l y  exceptional, o r  whether,:it is an especial ly  
- 

s$mp4e l imit ing case fog some s igni f icant  class of son-singular 

qsmglogies . 

Shepley, L., Proc. N&. Acad. Scie,: U.S.A. 52, 1403 (1964). 

Press,  New York, 1962, p. 201). 

(7) 

( p )  ERlers , J. , Recent Mvelopments inl'Genera1 Relat ibi ty  (Pergamon 

(g)Hawking, S.W. , preprint .  
1' rl ' i  

See ah30 Hawking, S. 'and Ellis, C.F.R. , 
1 P&S. Letters 1.7, 248 (1965). 



I. Statement of Results 

The solution given in eqs. 1.1 - 1.5 below has the folldnq 

properties . 

1) It is cylindrically symmetric. 

2) It is stationary but the time-like Killing vector is not 

the velocity-vector of matter. 

3) Defined with respect to velocity vector of matter, shear 

and rotation do not vanish but the expansion vanishes. 

-e qase<of Unceos-van Stockum and Ehlers solutions the motion is 

Thus unlike 

non-rigid, 

4) It does not contain any closed time-like line. 

: ,5) The space is complete. 

6) The solution is open in all spatial directions, Le. it 

eqteqds to infinite proper distance in all direction8. 

,. J) Matter everywhere moves in circle8 about the axis of 

syrrmetry* 

8) The solution is spatially inhomogeneous and the density as 
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well aa the kinematic quantit ies ro ta t ion  and ahear tend t o  zero aa 

one goes t o  a r b i t r a r i l y  large distance8 from the axie of sprmetry. 

Proof of the non-obvious statements w i l l  be given later. 

The l i n e  element 

2 2 2sr 2 2 
-ds - guvdXudxv = -dt + e (dr + dz ) + (r2 - m h 2  

+ 2mdq?€k 

I ‘  

is a solut ion of the Einstein f i e l d  equations 

R #% -KT v uv w 

with 

where  vP is  a un i t  time-like vector and const i tutes  a geodesic 

cgpgruence and 

Q and m: 

r: 
p is t h s  matter density with following value8 f o r  
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Here we have introduced a new variuble x through 

a 
r = P x  

where a is a constant. 

It is  t o  be noted tha t  by introducing the co-ordinates 

2 x = - r  a 
2 ,  

7 - -t a 
2 
a 6 - -z 

wtr c$n w r i t e  

where (dso)2 depends only x~@p and does not contain a. &ace 

this coaetant can ac tua l iy  be reduced,to a scaie r'accor -by a co-ordinate 

transformation and does not play any fur ther  role. 

The non-vanishing components of vu are 

... 



The density is given by 

4 -2Q {(l + x2)k - 1j2 
% = 2 e  a - 4  x ( l + x )  2 %  

11. Computed Properties 

A number of properties of the solution s ta ted  above follows 

f p p t r a i g h t f o r w a r d  computations, the resu l t s  of which will be given 

here., 

It can eas i ly  be shown from the expression I(9) of density 

that the t o t a l  amount of matter (calculated per uni t  proper length 

alpPg, z-direction) is f i n i t e  whereas the totaf proper volume ( p e p  

u$t proper length in z-direction) is  i n f i n i t e  so that the matter is 

dist r ibuted with zero average density o r  i n  i n f i n i t e  dilution. 

- -  

, '$he vo r t i c i ty  vector, corresponding to  the above V5locity is 

defined by 



It has only a component in z-direction, and the  msgnitude of 

angular velocity is given by 

1 
2 

2 1 - 2 9  o = gzzwzS = t 2 e 
a l + x  

. The shear tensor 

tr has only non-vanishhg qomponents cp and cpv gSven by 

From t h i s  one gets 

1 

cus 2a 

-2\t f(l + X 2 P  - 11 4 cp2 =p: (p"B = 7 e, x ( l + x )  4 2 l 

From the above expression i t  follows tha t  

II(6)7 
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It may be noted tha t  81 r p vaniiher more r8pidly than q, 2 
2 and 0 .  

W e  give below the components of Riemann t emor  CoPlpUted i n  an 

orthonormal frane. We write 

where 

g - diag(+ 1,+ 1,+ 1,-1) crv 

and 

1 

2 9 
W e'. d r  

W e . d z  

W e  compute the curvature tensor using the methods described by 

Misner("). Referred t o  above orthonormal frame, it haa the following 

iqiependent nonvanishing components 

= -e -2J!. gr' 
R1212 

(lo) Misner, C.W., J. Math. Phys., 5,' 924 (1963). 
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- 2 9  

I- e H L  -b’> 
R1310 r (2r + 

-29 * y2 
2 r R l O l O  * e 

- 2 9  
%323 -e r 

- 2 9 y  q? 
R2320 2r  

-2* 
2 

%030 a ‘ 5 e r 
I1 (10) 

It w i l l  be noted that a l l  cow’onents go to  zero as r -3/2 as 

r + =. The proper rad ia l  distance r out t o  a radius r goes as 
P 

3’4 f o r  r -. m, K being ,a constant. Hence we see tha t  

as r + O D ,  a l l  components f a l l  off  l i k e  r 2. This is s igni f icant  

i n  t h i s  frame since,  with each g 

polynomial i n  R wiql also vanish as r + O D .  I n  other frames 

where depends on r the behaviour of curvature invariants is  

not eas i ly  deduced from that of curvature components. 

f e d r = K r  r Q  

- 
P P 

= +1, one sees tha t  every invariant uv - 
UWWD 

. 

Finally we compute-the c-energy sca la r  as introduced by Thorne (11) 

f o r  wr system. A t  a pqint (trzrp) it i s  defined as 

2) II(l1) 

(”) ’Thorue, K.S., Ph.D. Thesis. Unpublished, Princeton University 
(1965). 
d i f fe ren t  from and is superior to  tha t  given i n  Thorne, K.S., 
Phvs.  Rev. 138, B251 (1965). 

It should be noted that  t h i s  def in i t ign  is s l igh t ly  
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where A is the space-time gradiant of the area A of the 

invariant surface passing through the point and consisting of the 
,)1 

points 

ls,l 
that point. For our metric, we have 

(t,r, z +a, cp + 8) 'where 0 s 01 s- 1, 0 5 p g 2n and 
4 

is the length of the standard "translation" Killing vector at 

where we have introduced 

2 2  q = r  - m  

111. Analyticity 

U s i n g  the metric components from E q .  1(1) one computes 

II(12) 

I1 (13) 

111 (1) 2@ (-g>f = re 

This metric is consequently singular at r = 0 where ( - g )  t = 0, 

but is analytic for r > 0 where each of the metric components 

r 2 2  - m , m and e 2Q is ,analytic and where (-8) t > 0. We show then 

that this r= 0 singularity is spurious (removable) by interpreting 

trycz as cylindrical co-ordinates; that is we introduce 
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new co-ordiartar 'PKn by the transformation 

t - t  

z = z  
III(2) 

X - r cos cp 

Y = r sin cp - 

and discuss analyticity in the new co-ordinates. The Jacobian of 

the transformation is just r, so the metric remaina analytic in 
2 tfie region r2 = 3C2 + p > 0 and we need conaider in detail only the 

neighborhood of r = 0. To transform Eq. I(1) to these "rectangular" 

co-ordinates it is most convenient to write 

where the quantity in square bracket is, by a familiar computation, 

analytic (even flat) in t m -  co-ordinates. We show now that the 

remaining terms contribute analytic fuactions to the metric components 

as is,,obviow for the term (e2' - l)dz2 (e2' - 1) (which contgibutes 

to. gzz) since e2' is 8n anaiytic fuuction of r 2 = z -2 i ,,2 y , ami 

hence of X,Y. We next note that 

rdr = Xd2t + YdY 
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2 r d~ - -YBX + XdY 

are analytic differential forms, so the analyticity of the contributione 

from 

2 Pdt(-) = % dt(r d(p) 
r 

2 2  and ( m d c ~ ) ~  = (5) (r drp)2 follows from that of m/r2 (which it is 

very easy to show from the expression for m). 
r 

Similarly from 

(e2'- l)dr2 = [(e2'- l)/r2](rdr)2 

one gets analytic contributions since (e2g - l)/r2 ie an analytic 

function of X and Y for all X,Y. 

The determinant of the transformed metric is just -e4'-.+ 0 so 

that qontravariant compoqents are also&verywhere analytic. 

ve4ocUies in (XYZt) co-qdinates are given by 

The 

III(4) 

S i w e  (y) is an analytlc kiinction o L  X,Y and x2 P ; ~ ( X  4 2  + YL) aid 
r 

a 
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x 2 
y A L  ( x - 2 )  

(1 + x2)b + 1 dr 

is less than unity for all finite x and hence all finite X,Y we 

find from Eqs. I(6) and 1(7) that vu remain analytic for all finite X,Y. 

Since c 1 we have m e r and hence r2 - m2 > 0 for all dr 

r, a fact which will be needed later. 

The preceding calculations are given in such meticulous detail 

because such computations do not appear in most texts, and the results 

(that m/r2 and (e2*- l)/r2 need to be analytic function of r2) 

are Bot obvious w€thout7computations. There is no general method 

for asserting differentiability of a hetric except to display it i n  

a co-ordinate system where the components are differentiable and 

where (-g) > 0. f 

w.. Completeness 

--- T n  t h i n  - - - ~  section we show that our space is complete, i.e. every 

geodwic has infinite length in both directions; for null geodesics 

we have to measure the length by mea- of an affine parameter. 

probfem is easy essentially because of the high synntetry involved 80 

The 

that we have a large number of constants of motion. If we take as 

Lagrangian for the general equations 
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where is a parmeter which can be taken as path length cr for 

non-null lines, we get the following conetantcr of motion 

where E, 4, Pz 

momentum along e-direction for a pa r t i c l e  of uni t  -88. 

can be interpreted as energy, angular momentum and 

We have 

depending on whether the geodesic is nul l ,  space-like or time-like. 

W e  can rewrite the above relat ions as followa 

2 2 2  d t  & - m E = b + E ( r  - m )  - = E +  2 r 2 r dX 
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.- 

The last equation can be re-written as 

dr 2 
+ V e f f W  = 0 

eff(r)* with a suitable definition of V 

It is to be noted that we must have .t = 0 for a particle 

itassing through origin. 

IThe last of the Eqs, IV(Q) is paqticularly easy to understand 

as it.resembles the motion of a particle in a potential well. If we 

1 ook at the behaviour of f€! we see that for large r 

-9 t e & r e  

Wence if #3=+0, Vaff (r) b e c q  positive for sufficiently 

large. r. 

there will be a value of r corresponding to all values of A. Again 

nince motion of r is bounded we find that 

Hence motion glong r-co-ordinate will be bounded so that 
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d ;- - < A  
dX 

whvis A im a conrtant depending on the particular gmoduic. Hancm 

i n  r-direction 8180 the particle can ercapo to infinity only at an 

infinite value of X 

geodericr can be continued for 811 valuer of X. 

hold for other co-ordimtea. 

paorring through origin there i r  no ringularity iuvolvmd U hare 

and m/r2 

80 that with rerpect to 8-co-ordimte th. 

Similar argu~~.ntr 

It i o  to be noted that even for particlor 

C - 0 

i r  finite at origin. 

Next we taka up the came E= = 0. In thir c u e  u r -O QD 

This shows that inf inite  value of r is reached only when 
dt 1 -. The other equatipns ehow that *as 1 and hence T 4 =, - dX 

and 

can be continued to inf in i te  value. 

the geodesics can be continued for a l l  values of the path parapleter. 

4 0 so that with respect to these co-ordinates a lso  1 -dl 
Hence we see that i n  a l l  cures 

xwr thP *pace Le complete. 



V. Absence of Closed Time-Like Lines 

2 9  2 2  as both e and ( r  - m ) are  pos-tive f o r  a,, values of r. Hence 

a t  such points the l i ne  +s no longer time-like. 

dqeepo t  have closed t iqe- l ike l ines .  

Hewe our space 

If the space contains closed time-like l i nes  then .t will - 

. be a periodic function of the parameter 1 describing the l ine.  

. I n  such a case we must have maxima and minima of tz CUI function 
d t  

of 1 so that there w i l l  be points where (r) w i l l  be zero. A t  
QA 

such a point we w i l l  have 

V I .  Characterization of the Metric 

I n  t h i s  sec t ion  we sha l l  t r y  t o  characterize our solut ion by i ts  

KQling vectors. 

vqctogs 

I n  the following, wg-do not distil)guish between 

Xu and t h e i r  cy-responding q f f e r e n t i a l  operators re la ted  by .. 

x - x u a  
axU 
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. .  

A basia for Killing vectors for our space are the following 

three vector8 

Each of them satisfies Killing’s equations 

which reduces to 

il 
if 6 is the vector a/&@. If we now try to look at the problem from 

a more general point of yiew and try t8 investigate infinitely long 

cylindrical systemwhich are stationary, the above are the natural 

KilliFg vectors for such a system. 

with each other, we can choose co-ordinate axes 

vectors point along them, 

Since the Killing vectors comrmte 

tqz so that the Killing 

In such a situation the metric components will 
I 

.t~_p,,d ~ n l y  05 the fourth co-ordinate r. If we impose the following 

reflection symnetries which are appropriate to an infinitely long 

cylindrically symnetric system, which is rotating, we can, with one 

arrive at our form of line-element, 
8tt’ further restriction on 

ye impose two reflection symnetries. The first ,is z -2. 

The second ia the simultaneous reflection t + -t and 
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= The f i r s t  one eliminates a l l  crosa tame in c. For T -4 - Q *  
consider the tern g and make the transformation z' = -2, other  

co-ordinates remaining same. This gives 
r z  

But from the re f lec t ion  symmetry 

Heace g = 0. Similarljy using the oqher synanetry a l l  cross terms except 

the one i n  cp - t are euminated. Heace our metric takes the form 

r z  

2 2 2 d r  + g dz + g  aCp + 2g d@t 2 
z z  w Qt 

gt,dt + grr 

where chach of the componqnts depends only on 

transi7nnation f o r  r ,  we can make 

of tile eymnetries and hence leaves the above form unchanged. 

the RitnplLfying assumption that g = -1. 

r. Now by a simpleecale 

- - This does not change any g r r  gzz* 

N e x t  we make 

tt 

Now the  f i e l d  equations give 
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Hence we! get 

-de2 = e2'(dr2 

Even with t h i s  

VI(7) 
2 2 2  2 + dz ) + (r2 - m ) d z g  + 2mdqxlt - d t  

form of l i ne  element, there are two solutione of the 

f i e l d  equations. 

which represent matter i n  r igid rotation. 

energy-momentum tensor we get solution f o r  matter i n  non-rigid rotat ion 

imrariantly distinguished from van Stockum's solution by the presence of 

I f  we use co-moving frame we get van Stockma's solut ion - - - 
I f  we employ our form of 

s4ear. 

An invariant 

is to  demand tha t  

magnipde. 

T .  T = - 1  

way ofzrestating our, special  condition g = -1 

the time-like Kill ing vector T has a constant 

tt 

V I ( 8 )  

A congtant value of 

$ich the time-like Kill ing vector is tangent is a geodesic congruence.. 

To% implies thaG that  congruepce of curves t o  

6' i i iq t e  rertPI!?hat irf we relax the conditifm that g,, be 

a-constant ,  we w i l l  ge t  + family of solutions,  ge t t iag  in general two 

solut$ons f o r  a given choice of the function gtt(r). 

W e  sum up the contents of t h i s  section by giving below the conditions 

that  uniquely lead to  our form of the metric. 
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a) There exirt throe coasluting Killing vectorr T, & 8 .  

d)  The myrtem is in non-rigid rotation, i . 0 .  shear fr prarent. 

VEX. Co-moving Co-ordinates and CosmolOgy 

One can transform the line-element I(1) to a form in which the 

veloc&ty-vector is Vu = 6p (co-moving frame). In this system, the 

metric explicitly involves time and is no longer stationary. It has 
0 

the f@lowing form in the co-moving system 

2 2  4 2 2 q r 2  r~ 2 2 -de = -dt + {e2'+ y ')dr + e dz + (r2 - m )dcp 2 
2 a2 1 + x  

VI1 (1) 
. I .  

f 44 - my)r tdrdrp + Z(r/ay) (ry - m)dqit 2 
2 %  a 

+ 
( l + X )  

. Although the expansion vanishes the non-vanishing shear would in this 

solution give rise to a Doppler shift in the frequency of light emitted 



hy a particle and received by another - put in another way the non- 

stationary nature of.the metric in the co-moving rystemwould c a w e  a 

Rpectral shift. Huwever this Doppler shift would in general be strongly 

anirotropic unlike the actually observed more or lea@ isotropic Ekrbble 

red-shift. We do not therefore propose the solution as a model of the 

obrerved universe but as noted earlier we can hope to build singularity- 

free dynamical model from this. 
- -  - 

This solution further emphasiees that one 

can construct anti-Mach metrice without taking x<eo ufSe to the A-term 

or introducing unphysical situations. 

EMENTS 

4 wish to express my,deep gratitude to Professor A.K. Raychaudhuri 

foy,sqggesting the problep and for numerous helpful discussions. 

wish tq thank Professor C.W. Misner for many helpful suggestions, and 

Professor J. Ehlers for reading part of the manuscript and suggesting 

improvements. 

I also 

The research was supported by NASA Grant NsG 436. 


